
1

BikeBuddy Writing 3

Team Foobarbaz: Claes Boillot, Adham Popal, Ethan Cohen, Matthew Gouvin

Product Description

User Stories

Cyclist / App User ● As a user of BikeBuddy, I would like to request a route from my

current location to a destination so that I can cycle to my

destination safely while also following an optimized cycling

route.

● As a user of BikeBuddy, I would like to search for nearby

locations in a search input field so that I can find nearby

locations that I want to bike to.

● As a user of BikeBuddy, I would like to request a cycling route

with input priorities (existing infrastructure, road safety, and

speed) so that I can get a route that meets my needs.

● As a user of BikeBuddy, I would like to make reports of a

blocked bike lane, a cyclist crash, high traffic areas, and a

difficult turning spot so that I can get a more optimized cycling

route in the future.

Engineer

● As an engineer, I would like to create a specialized graph for

biking in Washington D.C. and periodically update and store it.

2

Engineer (cont.)

● As an engineer, I would like to ensure that the backend logic of

path finding is fault-tolerant and accurate so that our app will

always be able to function for our users.

● As an engineer, I would like to be able to quantify user

preferences for the graph’s edge manipulation and the path-

finding of route requests.

● As an engineer, I would like to use cloud resources so that we

can save costs and only use infrastructure when we need it.

● As an engineer, I would like to create a REST API for the

application so that users can request a route and receive an

optimized cycling route that is generated from our route-finding

algorithm.

● As an engineer, I would like to create a cron job that runs

periodically so that we can update the data that is stored in the

graph representation of DC.

● As an engineer, I would like to retrieve data from the OpenData

DC public API so that we can update data that accurately

reflects the streets and bike lanes in DC.

● As an engineer, I would like to properly ingest applicable data

and clean it properly for graph processing.

● As an engineer, I would like to store user-reported events in a

non-relational database so that we can use that data as inputs to

our path-finding algorithm.

3

Engineer (cont.)

● As an engineer, I would like to leverage the Google Places API

so that users can search for nearby locations.

● As an engineer, I would like to combine OpenDataDC nodes

and OSMnx maps so that we can create an accurate map of bike

lanes in DC.

● As an engineer, I would like to use an AWS Lambda function

so that we can reconstruct the graph every month.

● As an engineer, I would like to use a DynamoDB database so

that we can integrate user reports into our map.

● As an engineer, I would like to post our map S3 bucket so that

we can store and access our map cheaply and easily.

● As an engineer, I would like to use AWS Lambda for routing

requests so that we can quickly evaluate shortests paths between

two nodes.

UI/UX Designer ● As a UI/UX designer, I would like for my app to be as easy to

navigate as possible so that users do have any confusion about

the functions of the app.

● As a UI/UX designer, I would like for my app to provide an

optimal user experience with visuals and elements that enhance

the appearance and features of my app.

4

Flow Diagrams

The following diagram represents the key steps the user takes when interacting with our

application.

5

6

UI Mockups

The following pictures are UI mockups of our application. They have been updated to be

consistent with the current design on the application.

When a user opens the application they will be

presented with a home screen that displays a map

with their current location. The Home tab will be

selected by default.

From the home page users will have the ability to

request routes from a starting location and a

destination location.

When users type in their locations, a dropdown list

of places will be rendered underneath the search bar.

These places will be suggested by making requests

and receiving responses from the Google Places

API. Users will select the place they want to choose

at their location. Once they input both a starting and

destination location, they can click the “Request

Route” button to request a route.

There are also tabs at the bottom of the application’s

interface to navigate between the three menus:

Home, Report, and Preferences.

7

When a user makes a request for a route the route

that is outputted by our algorithm will be rendered

on the map. The actual route is displayed on the

map interface.

8

When users click on the Preferences tab, a

component like the one on the right will render.

Users will have the ability to rank the priority of

three preferences. These preferences will be used as

inputs to the route-finding algorithm.

If time permits, the preferences menu may be

transformed into a profile menu for more detailed

user customizations.

Here is a sign in and sign up menu that would be

displayed when a user downloads and opens the app

for the first time.

9

When users click on the Report tab they will see a

menu that asks them to report an incident. Users

will be able to pin a location on a map and report an

incident at that marked location.

After they place the pin, a report form pop-up menu

will appear.

10

Users will be able to verify the location, select an

incident type from the options that are provided, and

they can write additional comments about the

incident.

When they would like to report the incident, they

can click the “Report Incident” button and their

incident report data will be sent to our application’s

application programming interface.

11

REST API Endpoints

There are two resources for our application’s REST API: routes and reports.

Specifically, when users request a route from the mobile applications, the application will make a

GET HTTP request to the /route resource with the following query parameters (the * indicates

that the parameter is required):

Parameter Type

Source longitude* Integer

Source latitude* Integer

Destination longitude* Integer

Destination latitude* Integer

Bike Lanes Boolean

Safe Roads Boolean

Low Traffic Boolean

Low Crime Boolean

12

This GET /route endpoint will return a route (or possibly 2-3 routes) to the application. The

format of this response will be an array of coordinate-like JSON objects with the following

attributes:

Attribute Type

Longitude Integer

Latitude Integer

Bike Lane Boolean

The array of coordinate-like JSON objects will be able to be displayed as a line (representing a

route) on the UI application’s map.

When a user reports an incident while cycling, the application will make a POST HTTP request

to the /report with the following body attributes (the * indicates that the attribute is required):

Attribute Type

Longitude* Integer

Latitude* Integer

Incident Type* String

Details String

13

This endpoint has no response body.

On success these endpoints will return a 200 status code with their respective response bodies (if

applicable). On failure these endpoints will return a 400 or 500 status code.

14

If we decide to create user profiles, we will have to add two new routes: one for registration and

one for authentication.

When users sign up for an account and click Sign Up on the application, the application will

make a POST HTTP request to the /registration resource with the following query parameters

(the * indicates that the parameter is required):

Attribute Type

First Name* String

Last Name* String

Email* String - of type email

Password* String

On success this endpoint will return a 200 status code and they will be automatically signed into

the app. On failure these endpoints will return a 400 or 500 status code with an error message.

When a user already has an account, they will sign into their account. When they fill in their

email and password, they will Sign In on the application. The application will make a POST

HTTP request to the /auth resource with the following query parameters (the * indicates that the

parameter is required):

Attribute Type

Email* String - of type email

15

Password* String

On success this endpoint will return a 200 status code and the users will be signed into the app.

On failure these endpoints will return a 400 or 500 status code with an error message.

Technical Specifications

Architecture Diagram

In this section, we will give an overview of the application's architecture as well as providing

detailed descriptions of how the different components of our application interact. .

Here is a high-level design of our architecture that is hosted using the Amazon Web Services

(AWS) cloud and deployed using AWS’s infrastructure as code software called AWS Cloud

Development Kit (CDK).

16

Here is a description of the individual components of our application:

● Mobile Application: Our React Native mobile application will allow users to look for

nearby locations, request cycling routes from a starting and destination location, report

events about bike-lane obstacles and road conditions, and record their user preferences.

We can build this mobile application application, publish the built package, and users can

download this package so that they can have the mobile application on their mobile

device.

17

● Google Places API: When a user is trying to find their source and destination locations,

we will make GET requests to the Google Places API. This will allow our application to

return nearby locations that match the searched input text.

● API Gateway REST API: Our API Gateway REST API will redirect all HTTP requests

to a Lambda function. We will refer to this Lambda function as our App Handler. This

REST API will also direct all responses from the App Handler Lambda function back to

the client who made the request. The REST API will be created using Lambda proxy

integration; this means that the App Handler Lambda function will handle the HTTP

logic that the REST API traditionally handles. .

● App Handler Lambda Function: This AWS Lambda function will parse the request

that is made by the client and parse the query parameters that might be passed through the

request. If a user is requesting a route, this Lambda function will load in the graph from

the S3 bucket and perform the shortest-path route-finding algorithm on this graph, given

the input parameters. If a user makes a request that needs to update the database — such

as reporting an incident, then this Lambda function will handle the logic for updating the

DynamoDB table that stores this information.

● S3 Bucket for Graph Storage: We have an AWS Simple Storage Service (S3) bucket

that stores the graph representation of DC streets and bike lanes in GraphML format. This

graph will be updated periodically using an AWS Lambda function that handles graph

reconstruction. When a user requests a route, the GraphML file that is stored in this S3

bucket will be read by the Lambda function and the route-finding algorithm will be

performed using this graph.

18

● DynamoDB Tables: We will use the DynamoDB tables to report user-report incidents

and events that impact cyclists in DC. This data will be used to update the graph that is

recreated during the Graph Reconstruction functionality. If we have enough time to

implement user profiles, then we will use another DynamoDB table to store user profile

information.

● Graph Reconstruction Lambda Function: This AWS Lambda function will

periodically make automatic updates to the GraphML file that is stored in the S3 bucket.

We will refer to this Lambda function as the Graph Reconstruction Lambda function.

This function will perform graph reconstruction by pulling in data from the Open Street

Maps library, the Open Data DC API as well as user-reported data in our AWS

DynamoDB database.

● Amazon Elastic Container Registry (ECR): We will use the Amazon Elastic Container

Registry to upload an image of a container environment that will be used to create our

Lambda function. Our App Handler Lambda function will need to be created using

Amazon ECR because we need to ensure that the Lambda function has all of the

dependencies that it needs to function properly and perform the route-finding

functionality.

We will now give three scenarios that illustrate how components of our infrastructure interact.

Scenario #1: Requesting a Bike Route

19

The first scenario describes the operations that are performed when a user requests a

route from a starting and ending location. The user will search for the location in the search input

field. As a user types in this input field for the starting location, the application will make GET

requests to the Google Places API, which returns a list of relevant locations. The user will see a

dropdown list of the relevant locations and will click the location that they desire. The user will

do the same for the destination location. Once both inputs are selected, the user will click the

“Request Route” button which will send an HTTP GET request to our REST API’s /route

endpoint with query parameters that include the location inputs and user preferences that are

configured in the Preferences tab of the mobile application.

Since the REST API is configured with Lambda proxy integration, the App Handler

Lambda function will handle the GET request to the /route endpoint, load the graph from the S3

20

bucket, perform the route-finding algorithm, and return the output of the algorithm to the client

application, which will render the route on the map that is in the application. Notice that the

Lambda function is created using the container image that is stored in the Amazon Elastic

Container registry.

Scenario #2: Creating an Incident Report & Storing User Data

The second scenario describes the operations that are performed when a user makes an

incident report. The user will fill out the fields in the incident report form on the mobile

application. Then, when the user clicks the “Report Incident” button, the application will make

an HTTP POST request to our REST API’s /report endpoint with a body that includes all of the

fields that were in the incident report form on the client application.

Since the REST API is configured with Lambda proxy integration, the App Handler

Lambda function will handle the POST request to the /report endpoint and the Lambda function

21

will update the DynamoDB table for user-report events accordingly. If we are able to implement

the user profile functionality of the application, the operations that are performed when a user

registers or logs in will be similar to the operations described here. These functional components

will have different resource endpoints (/registration and /authentication) and the data will be

stored in a separate DynamoDB table that stores user profile data.

22

Scenario #3: Graph Reconstruction

The third and final scenario describes the operations that are performed when the graph is

reconstructed. On a periodic basis our Graph Reconstruction Lambda function will be invoked.

The period on which the function is invoked can be altered and changed over time; for the

purposes of testing, we will be using a three month period. The Graph Reconstruction Lambda

will also be invoked when any update is made to the user-reported events table in DynamoDB.

This will cause the graph that is stored in the S3 bucket to be updated with different weights that

are assigned using the data that is stored in the user-reported events table, the OpenStreetMaps

data, and the OpenDataDC data. Once the graph is updated, the routes that are returned from the

route-finding algorithm may be different if the weight of the edges in the graph change

dramatically.

23

External APIs and Frameworks

Google Places

API

This API from the Google Maps platform will allow us to recommend search

recommendations for the location input fields. When a user wants to input a location,

they will type in the input text field. As the user types in this field, we will make GET

HTTP requests to the Google Places API, which will return a list of nearby places that

match the search input. The user will eventually select their desired location and the

application will be able to retrieve the latitudinal and longitudinal coordinates for the

location. These coordinates will be used in our application’s API requests to the REST

API that we created.

Open Data DC This platform provides a wide range of datasets for public use. We pull seven datasets

for our own use: bike lanes, bike trails, bike racks, prohibited riding areas, violent

crime, car crashes, and Vision Zero (which is a catalog of miscellaneous factors that

make a certain street, road, or intersection dangerous). The first four datasets go into

creating new nodes for the graph so that we can route users through existing cycling

infrastructure, as well as provide them a place to store their bikes when they aren’t

being ridden. The latter three datasets affect edge weights, as they all represent things

that can make a road more dangerous. As all of this data is updated periodically, we

also pull periodically to ensure the information we provide to the user is up to date.

OSMnx

package

This Python package allows us to fetch a bi-directional graph from OpenStreetMaps

that represents a network of city streets and intersections by city or coordinates.

24

Google Algorithm

Goal: Identify Google’s algorithm to use as a comparison and improvement guideline

Description: Google uses Djikstra’s algorithm and the A* algorithm for path-finding. The

distance, number of turns, and type of terrain determine the path-finding algorithm used which

also may include more specialized algorithms than those stated above. Both of these use distance

for edge weights as well as a combination of ongoing data such as traffic data to find the shortest

paths. Image recognition algorithms are used to create the map and are detailed enough to

identify roads, buildings, and landmarks. Machine learning is utilized to identify trends and

patterns to further improve the weight modifications that the above path-finding algorithms will

run on. These machine learning algorithms ingest data from user data, satellite imagery, and

street view images. This is the primary component that helps Google have up-to-date

information. Special cameras on vehicles catch 360 degree views of streets and are stitched

together to also have an accurate and real representation of areas captured for the maps

application. Lastly, Google uses geospatial data from large datasets to accurately show the

visuals of the map and use it as consideration in its weight modification. Satellite imagery seems

to be the overlying factor in having accurate and up-to-date information for the entire world, as

compared to our focus on just the city of Washington D.C. This is where our app can shine by

specializing just on DC and this specialization will be the competitive advantage against Google.

Graph Creation Algorithm

Goal: Create a graph that represents the city of Washington D.C. accurately and with a focus on

biking specifically.

25

Description: The main graph that will be generated infrequently (e.g. every three months) is

based on static infrastructure and the street layout. This graph is stored and used to service

incoming requests as part of the graph modification algorithm detailed below. This graph is

unlikely to change as bike lanes do not change quickly, thus it only needs to be rarely updated.

First, the OSMnx package provides a base graph “G” of Washington D.C, that is coordinate-

based and is simplified with nodes at intersections. “G” needs to be updated with bike-lane

specific data that we pull from the OpenData DC API. Some preprocessing is needed to properly

modify “G”. A new “bike” node needs to be added for every element of each segment. Adding a

node requires the deletion of a prior edge, and the addition of two edges upon its addition into

the graph. To do this efficiently, the nearest_edges method of the package is too slow.

Two data structures are needed to identify the two nodes that create an edge in graph

“G”. The first data structure is a cKDTree which takes in a list of points (x and y coordinates) for

its creation. The tree can then be queried with any inputted point and will return the nearest point

for the inputted point in O(log(n)) time. The points inserted into this data structure are

“midpoints” that are generated for each edge in “G” by interpolating a LineString object that

represents two nodes for that edge. The second data structure is a list of dictionaries where each

dictionary contains the data for each prior mentioned midpoint and the nodes that correspond to

the original edge in “G”. The returned result from the query of the tree is the index of the list that

was used to create it. The indices of the second data structure line up with the indices of the plain

list used to create the cKDTree. Thus, the tree can be queried to find the nearest point of a

coordinate from our API call. This point is actually used to pull the edge from the dictionary of

the second data structure in O(1) time. This is because the index returned by the cKDTree can

instantly locate the applicable dictionary that has edge information needed.

26

Data can now be properly used by finding the nearest applicable nodes for each node to

be added based on a coordinate read in. Data is cleaned and put into RoadNode objects that

contain the latitude and longitude coordinates for a line segment that represents a bike lane from

the API. RoadNode objects are organized to create a list of linked lists, where each list represents

a bike lane segment with adjacent nodes linked to each other. Here, a graph named “G_Copy”

will add all bike nodes. Each coordinate from each RoadNode object is queried with the

cKDTree and looks up the two nodes for the edge it will affect. The node is added based on its

coordinate; the edge for the original two nearest nodes is removed. The euclidean distances

between the new node and the two nearest nodes that it interjects are calculated and the two

edges are added with those distances. This process is repeated for every coordinate of every

RoadNode object.

G_copy now has all bike nodes and nodes from the package itself. The final graph is

obtained by overlaying certain nodes from G_copy onto the original graph “G”; this reduces the

sheer amount of bike nodes that were obtained from the OpenDataDC dataset. The nodes that

make up each edge from “G” are iterated upon and the shortest_path function from those nodes

is called on G_copy. A list of nodes that start and end with OSMnx nodes and with internodes

being bike lane nodes is reduced to a list of 3 or 4 nodes. These are then added to “G” with

simple edge removals and additions upon addition of applicable internodes. Finally, a

mathematical operation is used to modify the “length” attribute of these edges that are now

confirmed to be bike lanes to bias bike lanes for user-requests.

Graph Modification Algorithm

27

Goal: Modify the edge weights of our stored graph from the algorithm above that is specific to

the user’s route request and preferences. This modification will influence the actual paths

returned to a user.

Description: With a properly created graph, this graph now needs to be able to modify edge

weights before running Djikstra’s shortest path algorithm to actually service user requests.

Unlike the Graph Creation algorithm which modifies certain weights on generally static data

(bike-lanes), this algorithm is used to service specific route requests. Within their settings, users

will be able to configure their preferences for route features; specifically, users will be able to

choose how they want the app to prioritize certain qualities over others (i.e. preferring a route

with fewer crashes or being comfortable with painted bike lanes). This dynamic information

means different users can request routes with the same endpoints and get different routes. Each

edge in the graph is modified according to this dynamic information such that there is a separate

graph for every possible configuration of settings in the application. Those modifications could

either be a positive change (making the weight smaller) or negative change based on the data and

configuration. At the end, each graph is stored separately in S3, so that when the user makes a

request, the app can download the file that matches their settings configuration. Finally,

k_shortest_paths is performed on the graph corresponding to the user’s configuration to return

multiple paths that conform to the user’s preferences.

