
Let’s Design Ticketmaster!
Phil Lopreiato, Pat Cody



Why are we doing this?

● Eventually, you will probably have to do this in an interview
● Designing systems that scale is important
● If you don’t know how to monitor a system and prove it’s working, it’s probably 

broken



Warmup: How do we sell physical tickets?

● Capital One Arena is about to host a concert
● Imagine it’s like 30 years ago, and there’s no internet- how can we structure 

the ticket booth at the arena to sell physical tickets?



Some Questions to Get You Started

● How do people know when it’s their turn?
● How do we ensure fairness? (Ticketmaster’s specialty)
● How can we maximize the number of tickets sold?



Some Possible Answers

● Multiple ticket booths to improve throughput
● A queue 

○ Follow-up question: should we use one queue for all the ticket booths? Or one queue for 
each? What happens if one person is really slow?

● Limit number of tickets per person



System Design: It’s a little like Lego!

● System design involves combining different “building blocks” together to build 
a thing

● With distributed system design, those components are running on different 
machines

● Question: What are some different components that make up a distributed 
system?



System Design: It’s a little like Lego!

● Some possible answers:
○ A DB

■ What does it store? How does it scale?
○ Front-end
○ Load balancer
○ Cache
○ Queue
○ Periodic jobs

■ Cron!
○ Atomic operations

■ Check and set
■ DB locking

○ “Business logic”



Problem Constraints

● For some reason, Phil is trying to go to a Jets game, how can the stadium sell 
him a ticket?

● We don’t have to design a payment system (we can assume that exists)
● Once you start reserving a ticket, you have 5 minutes to complete the 

transaction before the tickets are released to someone else
● We can start with general admission tickets (no seat reservations), and move 

on to reserved seating



Ticket Selection



Needs Reservation



Confirming



Checkout



Let’s draw a system diagram!

Remember our problem constraints:

● We don’t have to design a payment system (we can assume that exists)
● Once you start reserving a ticket, you have 5 minutes to complete the 

transaction before the tickets are released to someone else
● We can start with general admission tickets (no seat reservations), and move 

on to reserved seating



Monitoring - 4 Golden Signals

● Latency - how long does a user flow take to complete

● Traffic - are we actually serving requests to people?

● Errors - are requests failing?

● Saturation - are any of our limiting resources constrained?

The Best Resource: https://sre.google/sre-book/monitoring-distributed-systems/

https://sre.google/sre-book/monitoring-distributed-systems/


Monitoring Building Blocks

● Time series - maintain a counter of “hits” over time

● Structured logging - key/value pairs or database rows of “events”

● System logs - low level signals or print statements from code

● Distributed tracing - track interactions across components



Distributed Logging



Monitoring Our System In Production

● How do we apply the 4 Golden Signals?

○ Latency: how long do the DB operations take
○ Traffic: are we completing operations
○ Errors: are any operations failing

■ Some errors are expected! (eg racing reservations for the same ticket) How do we 
classify those?

○ Saturation: CPU/memory usage of servers
■ What are the system bottlenecks?



Debugging Issues

One of the Golden Signals has tripped … How do we fix it? What data do we 
need?

● Counters – what is the magnitude of the problem, which code branches are 
we taking

● Error logging – exception messages, stack traces
● Tracing – can we see how a user flow progressed / failed



Example: HTTP Code Time Series



Example: Alerts



Example: Tracing



Example: Structured Logging



Example: Log Aggregation



Tools & Resources

Open Source Tools

● Prometheus
● Grafana

Papers to Read

● Gorilla (counters): https://www.vldb.org/pvldb/vol8/p1816-teller.pdf 
● Scribe (event logs): https://engineering.fb.com/2019/10/07/core-infra/scribe/ 
● Scuba (structured logging): 

https://research.fb.com/wp-content/uploads/2016/11/scuba-diving-into-data-at-facebook.pdf 
● Canopy (tracing): 

https://research.facebook.com/publications/canopy-end-to-end-performance-tracing-at-scale/ 

Books to Read

● The SRE Book: https://sre.google/sre-book/table-of-contents/ 

https://www.vldb.org/pvldb/vol8/p1816-teller.pdf
https://engineering.fb.com/2019/10/07/core-infra/scribe/
https://research.fb.com/wp-content/uploads/2016/11/scuba-diving-into-data-at-facebook.pdf
https://research.facebook.com/publications/canopy-end-to-end-performance-tracing-at-scale/
https://sre.google/sre-book/table-of-contents/

