Lecture 6: October 2

Git, PRs, CI/CD

Agenda

September Sprint Feedback
October Sprint Planning
Git / PR Reviews

Cl/CD

Presentation 1

For next week

Team Charter

Agenda

September Sprint Feedback
October Sprint Planning

Git / PR Reviews

Cl/CD

Presentation 1

For next week

Team Charter

September Sprint Grading Criteria

Total Sprint Progress: 20% (September: 4%)
- Sprint Board

Tickets created for class assignments + project requirements
Tickets addressed as “done”, “won’t do”, or moved to next sprint

- Weekly Status Updates

Status update is posted weekly and on time

- Assignments (student info form, resume, project proposal, etc)
Assignments submitted on time

September Sprint Feedback

- ~50% of students are consistently posting weekly updates

- ~75% of students are keeping up with sprint boards

Some created project-specific tickets
Some left comments!

- Majority of students submitted assignments on time

Takeaway: Keep up with status updates, you have 2 more sprints of work

Agenda

September Sprint Feedback
October Sprint Planning
Git / PR Reviews

Cl/CD

Presentation 1

For next week

Team Charter

Month‘ Expected Status Monthly Focus Deliverables
- Figure out teams - Create teams

September N/A - Brainstorm projects - resume

- Project proposal
- Teams selected - Final project selection - Hardware/software request

Mid-September - Handful of project ideas - Begin meeting w/ mentors - Writing: Executive Summary
- Begin technical investigations (services, apis, language, etc) - Writing: Technical summary
- Flesh out project functionality & requirements - Presentation: Elevator pitch

- Project selected & approved

- Main technologies selected
- project is well-defined
- Everyone is actively coding

- Code complete for alpha demo

- Continued focus on project
development

- Code complete for beta demo

March - Code complete for prelim demo

- Code 99% complete for final
April demo

May

- Coding should start (scaffolding, ci/cd, prototyping)

- Answer all questions needed to complete TDD - Writing: PRD

- Lot's of coding for alpha demo - Presentation: Project Design
- more coding for beta demo - Presentation: Alpha prototype
- Formalize design discussions into proper TDD - Writing: TDD

- continued development for beta demo

- focus on proper testing & integration - Website Design

- Refine code from a prototype into a fleshed out project -- testing,

integration, polishing - Presentation: Beta prototype
- continued development for prelim prototype (get as close to finished - Presentation: Elevator

as you can here) pitch/promotional

- final code polishing to wrap up project
- complete any necessary integration work

- add extra features if possible - Presentation: Pelim prototype
- finishing touches for final project submission - Presentation: Final demo
- ideally you are done with coding by this point - Promotional video

- Final package due

Month‘

September

Mid-September

Expected Status

N/A

- Teams selected
- Handful of project ideas

Monthly Focus

- Figure out teams
- Brainstorm projects

- Final project selection
- Begin meeting w/ mentors

Deliverables

- Create teams
- resume

- Project proposal
- Hardware/software request
- Writing: Executive Summary

- Project selected & approved

- Begin technical investigations (services, apis, language, etc)
- Flesh out project functionality & requirements
- Coding should start (scaffolding, ci/cd, prototyping)

- Writing: Technical summary
- Presentation: Elevator pitch

March

April
May

- Main technologies selected
- project is well-defined
- Everyone is actively coding

- Code complete for alpha demo

- Continued focus on project
development

- Code complete for beta demo

- Code complete for prelim demo

- Code 99% complete for final
demo

- Answer all questions needed to complete TDD
- Lot's of coding for alpha demo

- more coding for beta demo
- Formalize design discussions into proper TDD

- continued development for beta demo
- focus on proper testing & integration

- Refine code from a prototype into a fleshed out project -- testing,

integration, polishing

- Writing: PRD
- Presentation: Project Design

- Presentation: Alpha prototype
- Writing: TDD

- Website Design

- Presentation: Beta prototype

- continued development for prelim prototype (get as close to finished - Presentation: Elevator

as you can here)

- final code polishing to wrap up project
- complete any necessary integration work
- add extra features if possible

- finishing touches for final project submission
- ideally you are done with coding by this point

pitch/promotional

- Presentation: Pelim prototype

- Presentation: Final demo
- Promotional video

- Final package due

Sprint Goals

September Sprint: What problems do we want to solve?

- Project definition
- Technical & algorithmic requirements

October Sprint: What solutions will solve these problems?

e Whatlanguage

o Front end or backend

o iOS or Android

o Web App or Mobile App
e What algorithms

o What algorithms am I building?

o What algorithmic theory applies here?
e What APIs

o What libraries, databases, or programs do | need to connect to in order to build my solution?
o APl Documentation - good example of technical documentation

October Schedule

Date
10/2
10/9
10/16
10/23

10/30

Lab

Git, PRs, CI/CD, Team Charter

Writing 1 feedback, Project Design & UX
Presentation 1

NO LAB (focus time)

REMOTE LAB — team progress review

Assignments

Writing 1 (10/6)
Presentation 1 (10/16)
Project Website (10/20)
Writing 2 (10/27)

Presentation 2 (11/6)

Week of 11/3: “Demo 0” (individual progress check-in w/ instructor)

October Sprint Progress Rubric

Fall Semester

Full credit Minimal credit

- Tickets addressed as either “done”, “won’'t do”, or
moved to next sprint.

- Weekly standup updates & slack participation

- Code is PRed & merged to master. Branches & PRs
are well-scoped. PRs are linked to tickets.

"o

Few tickets addressed as either “"done”, “won’'t do”,
or moved to next sprint.

Minimal standup updates & rare participation
Minimal code is committed, PRs are missing or not
well-scoped.

Partial credit No credit

- Majority of tickets addressed as either “done”,
“won’t do”, or moved to next sprint.

- Occasional standup updates & moderate
participation

- Code is committed, PRs are sometimes present and
sometimes well-scoped. PRs are sometimes linked
to tickets.

No sprint board activity

No standup updates

No slack participation

No code committed to master/main

Expectations: Sprint Board

- Create tickets to capture class assignments (writings, presentations, etc)

- Create tickets to capture project-specific work
Create project-specific epics to organize work

- Tickets should include:
Descriptions
Assignees
Due dates
Sprint
Status
Linked PR (when there is code)

- AII tickets should be completed, moved to next sprint, or marked as
“won’t do” by the end of the sprint

Expectations: Weekly Status Updates

- Create a new status update ticket for each week
- Title should be Status Update - Week of MM/YY with the date matching the Sunday date
on the course website
- Due date should be Wednesday (this is a change from September!)
- Epic should be status update
- Move ticket from TODO to DONE as week progresses

- Students should post weekly status updates covering:
- What they completed (can link to other tickets)
- What they are blocked by
- What they are currently working on
- Each student must leave their own comment (do not update the description) before
the due date to receive full credit

Recommendation: Create all status update tickets at the beginning of
the sprint

Example Weekly Status Update

Expectations: Code

- All students should contribute code during the October Sprint
- Code should be pushed to feature branches and PRed to main
- We will only evaluate code pushed to main

- Link PRs to tickets if possible

Example Ticket w/ Linked PR

End of October: “Demo 0"

- Teams will meet with all instructors during 10/30 lab to go over general
progress and review what was accomplished in October
- During instructor meetings the week of 11/3, students will meet

individually with their instructor to review individual code & sprint
progress

Use “Demo 0” as your milestone for the October sprint

Agenda

September Sprint Feedback
October Sprint Planning
Git / PR Reviews

Cl/CD

Presentation 1

For next week

Team Charter

Git

Git Workflow Diagram

N7
e
\

Git Workflow Diagram for Senior Design

Developing a feature

git
git
git

checkout main && git pull
checkout -b js-my-feature
push -u origin js-my-feature

(code changes)

git
git
git

git
git
git
git

add .

commit -m “made changes”
push

checkout main && git pull

checkout js-my-feature
merge main (may need to resolve merge conflicts)
push

(open PR)

Git Resources

- ChatGPT

- https://dangitgit.com/en

- https://www.atlassian.com/qit/tutorials/using-branches

- https://code.visualstudio.com/docs/sourcecontrol/overview# 3way-merge-ed
itor

https://dangitgit.com/en
https://www.atlassian.com/git/tutorials/using-branches
https://code.visualstudio.com/docs/sourcecontrol/overview#_3way-merge-editor
https://code.visualstudio.com/docs/sourcecontrol/overview#_3way-merge-editor

PR Reviews

Purpose of Code Reviews

- Ensure that team members are aware of changes to the codebase
- Allow others to verify the correct things are being tested
- Facilitate discussions over implementation design

The overall code health should be improving over time, and developers should
make progress on their tasks

Reviewers should favor approving PRs once its in a state where it
improves code health, even if the PR isn’t perfect

Authoring a Pull Request

- Asingle PR should represent a single piece of functionality

- Multiple PRs with small changes is better than one PR with lots of changes

- The description should include what changed and why the change is
necessary

- Add pr comments to code changes to help reviewers navigate the diff

- Link PR to sprint task

- If the PR is large or complicated, meet with the reviewers to discuss

Example PRs

LD Conversation 0 - Commits 3 E) Checks 4 Files changed 1 Q) Conversation 1 - Commits 2 EJ Checks 9 Files changed 3
. commented last week - edited by jira (bot) + . commented 4 days ago

dalalf WHAT
Describe what changes were made. Describe what changes were made.
Add ngram-based second pass of document matching for cases where sentence similarity finds a partial match Add more metadata to document db

 Create some helper methods for common logic

i 9 WHY
¢ Add fallback when the provided similarity metric is sentence similarity to try ngram similarity for documents who had
partiallmaichies What was the ivation for the ch ? Link a JIRA ticket and/or sentry alert if applicable.

¢ Include similarity metric and original match map in match_details json
¢ Minor change to use defensive logic on all similarity metrics TESTING
¢ Other minor refactoring+cleanups

Include instructions on how you tested and how the reviewer can test your changes.

(©)

WHY

What was the ivation for the ch ? Link a JIRA ticket and/or sentry alert if applicable.

MLE-182

|©

Investigation found 14/62 partial matches were visually identical, but below the sentence based threshold due to ocr
artifacts. the ngram-based similarity metric is less sensitive to these ocr artifacts, and therefore quite a few more match
confidently.

TESTING

Include instructions on how you tested and how the reviewer can test your changes.

Test runs on subset of data, followed by a full backfill

(©)

Reviewing a Pull Request

Goal: Ensure the changes are positive, even if they aren’t perfect

Mountain: feedback that blocks all related work and requires immediate
action

Boulder: feedback that blocks the work from being approved, but doesn’t
require immediate action

Pebble: feedback that does not block the PR, but requires future action
Sand: feedback that is not blocking, but should be considered if multiple team
members concur.

Dust/nit: feedback that is more a suggestion and not required

https://www.netlify.com/blog/2020/03/05/feedback-ladders-how-we-encode-code-reviews-at-netlify/

Code Reviews for Senior Design

- Team members should not push directly to main

- Team members should try to review each other’s code

- While mentors should not be reviewing all code changes, ask them to do a
PR review sometime this semester!

- PRs do not need to be blocked by approvals

Agenda

September Sprint Feedback
October Sprint Planning
Git / PR Reviews

Cl/CD

Presentation 1

For next week

Team Charter

Continuous Integration & Deployment

- Continuous Integration is a practice that involves frequently and automatically
integrating code changes into a shared repository. The core idea is to detect

and address integration issues early in the development process.

- Unit tests, integration tests, linting. Blocks merging bad code. Frees up developers from
manually testing

- Continuous Deployment is an extension to Cl that automates the deployment
process. It means every code change that passes Cl tests is automatically

deployed without manual intervention.
- Builds artifacts, deploys to staging and/or prod environments

Example CI/CD Pipeline

@ deploy_ga_app

Matrix: deploy_retrain_v4

@ 14 jobs completed

(@ Build train image

- Run the CI step on every push
- Gate merges on Cl step

- Run the deploy step on every push to main
- Gate deploy step on Cl step

CI/CD Tools

- Circle ClI, Travis, Jenkins, Argo, Codefresh, Spinnaker
- Github Actions

Free!
Easy to configure as part of your github repo

Example Github Action Pipeline

CI/CD for Senior Design

- This is not required, but highly recommended
- Use github actions for CI/CD execution

- Recommended CI steps (on every push):
Lint code
Run tests
Build artifacts
- Recommended CD steps (on merges to main or manual trigger):
Build artifacts
Deploy changes

Agenda

September Sprint Feedback
October Sprint Planning
Git / PR Reviews

Cl/CD

Presentation 1

For next week

Team Charter

Presentation 1: Elevator Pitch

e Due Date: 10/16
e Goal
o Convince us that what you are building is a great idea, and that you have a way to make it
a reality
o Build off of writing 1 & project proposal

o Audience: non technical (investors, upper management, etc)
e Requirements

o 4 minutes long + 2 mins for questions

o What are you building and why? Who are you users? What are the goals? How is it
different from current products/research?

o Be prepared to answer non-technical questions

o Grade is primarily based on presentation skills!

Upload slides to shared google drive prior to presentation day

https://gw-cs-sd-24-25.github.io/lectures/Presentations-Rubric.pdf
https://drive.google.com/drive/folders/1PzZd3u5ZGIjcYxVX4yX88PY0lDUWrlJ6?usp=drive_link

Agenda

September Sprint Feedback
October Sprint Planning
Git / PR Reviews

Cl/CD

Presentation 1

For next week

Team Charter

For Next Week

Weekly Focus

- Plan out your sprint — what do you want to accomplish by “demo 0”
Mentor Meetings

- [Team]: October sprint planning
Deadlines

[Individual]: Writing 1 - Executive Summary (Oct. 6)
[Individual]: September team progress form (Oct. 6)
[Team]: Team Charter (Oct. 6, Github)

[Team]: Presentation 1 (Oct. 16)

Reminders

- Don’t forget to post weekly updates (due EOD!)

https://gw-cs-sd-24-25.github.io/lectures/writing.html
https://forms.gle/gBJWwbYe16FKRjqr9

Agenda

September Sprint Feedback
October Sprint Planning
Git / PR Reviews

Cl/CD

Presentation 1

For next week

Team Charter

Team Charter: What is it?

- What: A formal document that defines the team’s mission, scope of
operation, objectives, and participants’ roles and responsibilities

- Why: Establishes clear expectations and guidelines for team collaboration

Importance of Team Charters

- Aligns team members on project goals and expectations
- Clarifies roles and responsibilities

- Establishes communication protocols

- Helps prevent and resolve conflicts

- Increases team accountability

Components of a Team Charter

Goals and Objectives

Roles and Responsibilities
Communication Guidelines
Decision Making Guidelines
Conflict Resolution Strategies
Performance Standards
Resource Allocation

N RN =

Goals & Obijectives

- Brief description of team’s project
- Specific short and long term objectives

These can be taken from the project proposal slides

Roles & Responsibilities

- Clear definition of each team member’'s role

- Specific responsibilities assigned to each role
Project specific (frontend, backend, etc)
Logistics: who creates weekly status tickets, who takes notes in meetings, etc

- Skills and strengths of team members
EX:

- Backend developer: responsible for database design & api development
- Team lead: responsible for creating weekly tickets, running weekly
meetings, keeping team on track

Communication Guidelines

- Preferred communication channels (slack, in person, etc)

- Frequency and format of team meetings (as a team, w/ instructors, w/
mentors)

- Reporting and documentation standards (where do notes go?)

Ex: “weekly mentor meetings every Wednesday at 8pm via Zoom”

Decision Making Guidelines

- Agreed-upon method for making team decisions
- Voting procedures or consensus-building approaches
- Escalation process for unresolved decisions

Ex: “Major decisions require a majority vote. If no majority, we will reach out to
team mentor for guidance.”

Performance Standards

- Expectations for deliverables

- Time management and deadline adherence
- Code review and testing procedures

- Team member removal

Ex: “All code must pass tests and be reviewed by at least one other team
member prior to merging”

Resource Allocation

- Distribution of workload
- Time commitments expected from each member
- Shared resources and how to access them (hardware, compute, etc)

Ex: “Each team member commits to 10 hours per week on the project. Work is
assigned based on each member’s expertise and availability.”

Team Charter for Senior Design

1. Download a copy of the team charter template

2. As ateam, work together to fill in the template. Feel free to update as you

see fit.

a. Be as specific and thorough as possible

b. Thisis a living document, edit as needed

Commit the charter to your github repo as team_charter.md

4. In a separate commit, each member should add their name to the
signature section.

5. Use the rest of lab to complete this, if you don't finish it is due 10/6.

W

https://gw-cs-sd-24-25.github.io/lectures/team_charter.md

