
Lecture 6: October 2
Git, PRs, CI/CD

Agenda

● September Sprint Feedback

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Team Charter

Agenda

● September Sprint Feedback

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Team Charter

September Sprint Grading Criteria

Total Sprint Progress: 20% (September: 4%)

- Sprint Board
- Tickets created for class assignments + project requirements
- Tickets addressed as “done”, “won’t do”, or moved to next sprint

- Weekly Status Updates
- Status update is posted weekly and on time

- Assignments (student info form, resume, project proposal, etc)
- Assignments submitted on time

September Sprint Feedback

- ~50% of students are consistently posting weekly updates
- ~75% of students are keeping up with sprint boards

- Some created project-specific tickets
- Some left comments!

- Majority of students submitted assignments on time

Takeaway: Keep up with status updates, you have 2 more sprints of work

Agenda

● September Sprint Feedback

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Team Charter

Month Expected Status Monthly Focus Deliverables

September N/A
- Figure out teams
- Brainstorm projects

- Create teams
- resume

Mid-September
- Teams selected
- Handful of project ideas

- Final project selection
- Begin meeting w/ mentors

- Project proposal
- Hardware/software request
- Writing: Executive Summary

October - Project selected & approved

- Begin technical investigations (services, apis, language, etc)
- Flesh out project functionality & requirements
- Coding should start (scaffolding, ci/cd, prototyping)

- Writing: Technical summary
- Presentation: Elevator pitch

November

- Main technologies selected
- project is well-defined
- Everyone is actively coding

- Answer all questions needed to complete TDD
- Lot's of coding for alpha demo

- Writing: PRD
- Presentation: Project Design

December - Code complete for alpha demo
- more coding for beta demo
- Formalize design discussions into proper TDD

- Presentation: Alpha prototype
- Writing: TDD

January
- Continued focus on project
development

- continued development for beta demo
- focus on proper testing & integration - Website Design

February - Code complete for beta demo

- Refine code from a prototype into a fleshed out project -- testing,
integration, polishing
- continued development for prelim prototype (get as close to finished
as you can here)

- Presentation: Beta prototype
- Presentation: Elevator
pitch/promotional

March - Code complete for prelim demo

- final code polishing to wrap up project
- complete any necessary integration work
- add extra features if possible - Presentation: Pelim prototype

April
- Code 99% complete for final
demo

- finishing touches for final project submission
- ideally you are done with coding by this point

- Presentation: Final demo
- Promotional video

May - Final package due

Month Expected Status Monthly Focus Deliverables

September N/A
- Figure out teams
- Brainstorm projects

- Create teams
- resume

Mid-September
- Teams selected
- Handful of project ideas

- Final project selection
- Begin meeting w/ mentors

- Project proposal
- Hardware/software request
- Writing: Executive Summary

October - Project selected & approved

- Begin technical investigations (services, apis, language, etc)
- Flesh out project functionality & requirements
- Coding should start (scaffolding, ci/cd, prototyping)

- Writing: Technical summary
- Presentation: Elevator pitch

November

- Main technologies selected
- project is well-defined
- Everyone is actively coding

- Answer all questions needed to complete TDD
- Lot's of coding for alpha demo

- Writing: PRD
- Presentation: Project Design

December - Code complete for alpha demo
- more coding for beta demo
- Formalize design discussions into proper TDD

- Presentation: Alpha prototype
- Writing: TDD

January
- Continued focus on project
development

- continued development for beta demo
- focus on proper testing & integration - Website Design

February - Code complete for beta demo

- Refine code from a prototype into a fleshed out project -- testing,
integration, polishing
- continued development for prelim prototype (get as close to finished
as you can here)

- Presentation: Beta prototype
- Presentation: Elevator
pitch/promotional

March - Code complete for prelim demo

- final code polishing to wrap up project
- complete any necessary integration work
- add extra features if possible - Presentation: Pelim prototype

April
- Code 99% complete for final
demo

- finishing touches for final project submission
- ideally you are done with coding by this point

- Presentation: Final demo
- Promotional video

May - Final package due

Sprint Goals

September Sprint: What problems do we want to solve?

- Project definition
- Technical & algorithmic requirements

October Sprint: What solutions will solve these problems?

● What language
○ Front end or backend
○ iOS or Android
○ Web App or Mobile App

● What algorithms
○ What algorithms am I building?
○ What algorithmic theory applies here?

● What APIs
○ What libraries, databases, or programs do I need to connect to in order to build my solution?
○ API Documentation - good example of technical documentation

October Schedule

Date Lab Assignments

10/2 Git, PRs, CI/CD, Team Charter Writing 1 (10/6)

10/9 Writing 1 feedback, Project Design & UX Presentation 1 (10/16)

10/16 Presentation 1 Project Website (10/20)

10/23 NO LAB (focus time) Writing 2 (10/27)

10/30 REMOTE LAB – team progress review Presentation 2 (11/6)

Week of 11/3: “Demo 0” (individual progress check-in w/ instructor)

October Sprint Progress Rubric

Minimal credit

- Few tickets addressed as either “done”, “won’t do”,
or moved to next sprint.

- Minimal standup updates & rare participation
- Minimal code is committed, PRs are missing or not

well-scoped.

No credit

- No sprint board activity
- No standup updates
- No slack participation
- No code committed to master/main

Fall Semester

Full credit

- Tickets addressed as either “done”, “won’t do”, or
moved to next sprint.

- Weekly standup updates & slack participation
- Code is PRed & merged to master. Branches & PRs

are well-scoped. PRs are linked to tickets.

Partial credit

- Majority of tickets addressed as either “done”,
“won’t do”, or moved to next sprint.

- Occasional standup updates & moderate
participation

- Code is committed, PRs are sometimes present and
sometimes well-scoped. PRs are sometimes linked
to tickets.

Expectations: Sprint Board

- Create tickets to capture class assignments (writings, presentations, etc)
- Create tickets to capture project-specific work

- Create project-specific epics to organize work

- Tickets should include:
- Descriptions
- Assignees
- Due dates
- Sprint
- Status
- Linked PR (when there is code)

- All tickets should be completed, moved to next sprint, or marked as
“won’t do” by the end of the sprint

Expectations: Weekly Status Updates

- Create a new status update ticket for each week
- Title should be Status Update - Week of MM/YY with the date matching the Sunday date

on the course website
- Due date should be Wednesday (this is a change from September!)
- Epic should be status update

- Move ticket from TODO to DONE as week progresses
- Students should post weekly status updates covering:

- What they completed (can link to other tickets)
- What they are blocked by
- What they are currently working on
- Each student must leave their own comment (do not update the description) before

the due date to receive full credit

Recommendation: Create all status update tickets at the beginning of
the sprint

Example Weekly Status Update

Expectations: Code

- All students should contribute code during the October Sprint
- Code should be pushed to feature branches and PRed to main
- We will only evaluate code pushed to main
- Link PRs to tickets if possible

Example Ticket w/ Linked PR

End of October: “Demo 0”

- Teams will meet with all instructors during 10/30 lab to go over general
progress and review what was accomplished in October

- During instructor meetings the week of 11/3, students will meet
individually with their instructor to review individual code & sprint
progress

Use “Demo 0” as your milestone for the October sprint

Agenda

● September Sprint Feedback

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Team Charter

Git

Git Workflow Diagram

Git Workflow Diagram for Senior Design

Developing a feature

git checkout main && git pull
git checkout -b js-my-feature
git push -u origin js-my-feature

(code changes)
git add .
git commit -m “made changes”
git push

git checkout main && git pull
git checkout js-my-feature
git merge main (may need to resolve merge conflicts)
git push
(open PR)

Git Resources

- ChatGPT
- https://dangitgit.com/en
- https://www.atlassian.com/git/tutorials/using-branches
- https://code.visualstudio.com/docs/sourcecontrol/overview#_3way-merge-ed

itor

https://dangitgit.com/en
https://www.atlassian.com/git/tutorials/using-branches
https://code.visualstudio.com/docs/sourcecontrol/overview#_3way-merge-editor
https://code.visualstudio.com/docs/sourcecontrol/overview#_3way-merge-editor

PR Reviews

Purpose of Code Reviews

- Ensure that team members are aware of changes to the codebase
- Allow others to verify the correct things are being tested
- Facilitate discussions over implementation design

The overall code health should be improving over time, and developers should
make progress on their tasks

Reviewers should favor approving PRs once its in a state where it
improves code health, even if the PR isn’t perfect

Authoring a Pull Request

- A single PR should represent a single piece of functionality
- Multiple PRs with small changes is better than one PR with lots of changes
- The description should include what changed and why the change is

necessary
- Add pr comments to code changes to help reviewers navigate the diff
- Link PR to sprint task
- If the PR is large or complicated, meet with the reviewers to discuss

Example PRs

Reviewing a Pull Request

Goal: Ensure the changes are positive, even if they aren’t perfect

- Mountain: feedback that blocks all related work and requires immediate
action

- Boulder: feedback that blocks the work from being approved, but doesn’t
require immediate action

- Pebble: feedback that does not block the PR, but requires future action
- Sand: feedback that is not blocking, but should be considered if multiple team

members concur.
- Dust/nit: feedback that is more a suggestion and not required

https://www.netlify.com/blog/2020/03/05/feedback-ladders-how-we-encode-code-reviews-at-netlify/

Code Reviews for Senior Design

- Team members should not push directly to main
- Team members should try to review each other’s code
- While mentors should not be reviewing all code changes, ask them to do a

PR review sometime this semester!
- PRs do not need to be blocked by approvals

Agenda

● September Sprint Feedback

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Team Charter

Continuous Integration & Deployment

- Continuous Integration is a practice that involves frequently and automatically
integrating code changes into a shared repository. The core idea is to detect
and address integration issues early in the development process.

- Unit tests, integration tests, linting. Blocks merging bad code. Frees up developers from
manually testing

- Continuous Deployment is an extension to CI that automates the deployment
process. It means every code change that passes CI tests is automatically
deployed without manual intervention.

- Builds artifacts, deploys to staging and/or prod environments

Example CI/CD Pipeline

- Run the CI step on every push
- Gate merges on CI step

- Run the deploy step on every push to main
- Gate deploy step on CI step

CI/CD Tools

- Circle CI, Travis, Jenkins, Argo, Codefresh, Spinnaker
- Github Actions

- Free!
- Easy to configure as part of your github repo

Example Github Action Pipeline

CI/CD for Senior Design

- This is not required, but highly recommended
- Use github actions for CI/CD execution
- Recommended CI steps (on every push):

- Lint code
- Run tests
- Build artifacts

- Recommended CD steps (on merges to main or manual trigger):
- Build artifacts
- Deploy changes

Agenda

● September Sprint Feedback

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Team Charter

Presentation 1: Elevator Pitch

● Due Date: 10/16
● Goal

○ Convince us that what you are building is a great idea, and that you have a way to make it
a reality

○ Build off of writing 1 & project proposal
○ Audience: non technical (investors, upper management, etc)

● Requirements
○ 4 minutes long + 2 mins for questions
○ What are you building and why? Who are you users? What are the goals? How is it

different from current products/research?
○ Be prepared to answer non-technical questions
○ Grade is primarily based on presentation skills!

Upload slides to shared google drive prior to presentation day

https://gw-cs-sd-24-25.github.io/lectures/Presentations-Rubric.pdf
https://drive.google.com/drive/folders/1PzZd3u5ZGIjcYxVX4yX88PY0lDUWrlJ6?usp=drive_link

Agenda

● September Sprint Feedback

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Team Charter

For Next Week

Weekly Focus

- Plan out your sprint – what do you want to accomplish by “demo 0”

Mentor Meetings

- [Team]: October sprint planning

Deadlines

- [Individual]: Writing 1 - Executive Summary (Oct. 6)
- [Individual]: September team progress form (Oct. 6)
- [Team]: Team Charter (Oct. 6, Github)
- [Team]: Presentation 1 (Oct. 16)

Reminders

- Don’t forget to post weekly updates (due EOD!)

https://gw-cs-sd-24-25.github.io/lectures/writing.html
https://forms.gle/gBJWwbYe16FKRjqr9

Agenda

● September Sprint Feedback

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Team Charter

Team Charter: What is it?

- What: A formal document that defines the team’s mission, scope of
operation, objectives, and participants’ roles and responsibilities

- Why: Establishes clear expectations and guidelines for team collaboration

Importance of Team Charters

- Aligns team members on project goals and expectations
- Clarifies roles and responsibilities
- Establishes communication protocols
- Helps prevent and resolve conflicts
- Increases team accountability

Components of a Team Charter

1. Goals and Objectives
2. Roles and Responsibilities
3. Communication Guidelines
4. Decision Making Guidelines
5. Conflict Resolution Strategies
1. Performance Standards
2. Resource Allocation

Goals & Objectives

- Brief description of team’s project
- Specific short and long term objectives

These can be taken from the project proposal slides

Roles & Responsibilities

- Clear definition of each team member’s role
- Specific responsibilities assigned to each role

- Project specific (frontend, backend, etc)
- Logistics: who creates weekly status tickets, who takes notes in meetings, etc

- Skills and strengths of team members

Ex:

- Backend developer: responsible for database design & api development
- Team lead: responsible for creating weekly tickets, running weekly

meetings, keeping team on track

Communication Guidelines

- Preferred communication channels (slack, in person, etc)
- Frequency and format of team meetings (as a team, w/ instructors, w/

mentors)
- Reporting and documentation standards (where do notes go?)

Ex: “weekly mentor meetings every Wednesday at 8pm via Zoom”

Decision Making Guidelines

- Agreed-upon method for making team decisions
- Voting procedures or consensus-building approaches
- Escalation process for unresolved decisions

Ex: “Major decisions require a majority vote. If no majority, we will reach out to
team mentor for guidance.”

Performance Standards

- Expectations for deliverables
- Time management and deadline adherence
- Code review and testing procedures
- Team member removal

Ex: “All code must pass tests and be reviewed by at least one other team
member prior to merging”

Resource Allocation

- Distribution of workload
- Time commitments expected from each member
- Shared resources and how to access them (hardware, compute, etc)

Ex: “Each team member commits to 10 hours per week on the project. Work is
assigned based on each member’s expertise and availability.”

Team Charter for Senior Design

1. Download a copy of the team charter template
2. As a team, work together to fill in the template. Feel free to update as you

see fit.
a. Be as specific and thorough as possible
b. This is a living document, edit as needed

3. Commit the charter to your github repo as team_charter.md
4. In a separate commit, each member should add their name to the

signature section.
5. Use the rest of lab to complete this, if you don’t finish it is due 10/6.

https://gw-cs-sd-24-25.github.io/lectures/team_charter.md

