Lecture 14: March 5

Deployments

Agenda

- Demo 3

- March Sprint

- Deployment Technologies
- Example Industry Setup

- Upcoming Deadlines

- Deployment Tutorials

Demo 3 + Feedback

- This week you’ll meet w/ instructors as a team to review February progress

- As next week is Spring Break, we’ll send out written feedback instead of
meeting to review.

- We’re working through February Sprint grades and will share them in the
coming weeks as well. Generally things are looking good!

Agenda

- Demo 3

- March Sprint

- Deployment Technologies
- Example Industry Setup

- Upcoming Deadlines

- Deployment Tutorials

Month Expected Status Monthly Focus Deliverables
- Writing: Executive Summary
- Updated Gantt Chart
- Begin technical investigations (services, apis, programming - Teamwork survey
language, etc) - Writing: Technical summary
- Project selected & approved by - Flesh out project functionality & requirements - Presentation: Elevator pitch
instructors - Coding should start (scaffolding, ci/cd, prototyping) - Presentation: Project design
- Main technologies selected, project
is well-defined - Answer all questions needed to complete TDD
- Everyone is actively coding - Lot's of coding for alpha demo - Writing: PRD
- more coding for beta demo - Presentation: Alpha prototype
- Code complete for alpha demo - Formalize design discussions into proper TDD - Writing: TDD
- Continued focus on project - continued development for demo 2
development - focus on proper testing & integration - Demo 2 (individual)
- Refine code from a prototype into a fleshed out project -- testing,
integration, polishing
- continued development for demo 3 (get as close to finished as you - Presentation 4
- Code complete for demo 2 can here) - Demo 3 (team)
- final code polishing to wrap up project
- complete any necessary integration work
March - Code complete for demo 3 - add extra features if possible - Demo 4 (individual)
- Final Demo
- Code 99% complete for final - finishing touches for final project submission - Final Presentation
April demo - ideally you are done with coding by this point - R&D Showcase

May

- Final package due (team
website)

Explore idea
generation

Brainstorm with
team

Exit Criteria:
Problem
Statement Defined

DISCOVERY

March Work

D 1. Ideation 2. Product Defined 3. Prototyping

Build iterative and
demo-able pieces of
the project/solution

Define Use Cases

Estimate LOE and
development plan
(steps and tasks)

Exit Criteria:
Alpha and Beta
releases

Exit Criteria:
Product
Requirements and
Project plan made

| DEVELOPMENT

/" \

5. Launch

4. Validate & Test

Ensuring the
product works

Feature complete

Begin GTM
Validating in eyes execution

users

Exit Criteria:
Product is
launched to users

Exit Criteria:
Product quality i
demonstrated

LAUNCH

March Sprint TODOs

- Refine sprint goals (update github, review w/ mentor & instructors)
- These goals should be easy — code-complete for your project!

- Sprint planning in next mentor meeting

- Peer PR review (before end of month)

- Each student should author 1 PR
- Each student should review 1 PR
- You need to leave comments, so we know who reviewed which pr

Agenda

- Demo 3

- March Sprint

- Deployment Technologies
- Example Industry Setup

- Upcoming Deadlines

- Deployment Tutorials

Deployment Technologies

- Modern software deployment has evolved significantly

- Understanding deployment practices are important, you'll likely learn this on
the job

- Today: explain a typical industry deployment pattern

- For senior design: do something much simpler

You wrote your app — what next?

- How will users access my application?

- How do | ensure my app runs consistently across different envs?
- How do | handle dependencies?

- How will | update my application without downtime?

- How will the application scale as demand grows?

- How will | monitor performance and troubleshoot issues?

Why Deployment is Challenging

- “Works on my machine” syndrome
Environment inconsistencies
Dependency management

- Configuration management
- Scaling issues

- Deployment downtime

- Rollback capabilities

- Security concerns

The olden days (before containers)

- Physical servers + manual installation and configuration
- Virtual machines — better, but still heavy overhead

- Manual deployment scripts

- “Snowflake” servers (unique & hard to replicate)

- Long provisioning times

Intro to Docker

- Lightweight containerization platform

- Packages applications with all
dependencies

- Provides consistent environments

- Isolates applications from one
another

- Efficient resource utilization
compared to VMs

- Solves the “works on my machine”
problem

Containerized Applications

m
Q
Q

<<

Host Operating System

Infrastructure

Docker Benefits

- Consistency: same env for
development & production

- Isolation: applications run
independently

- Portability: run anywhere that has
docker installed

- Efficiency: Lightweight compared to
VMs

- Version Control: single version
representing your application

Containerized Applications

m
Q
Q

<<

Host Operating System

Infrastructure

Container Orchestration Challenges

We used docker to create a container for our application, but...

- Managing multiple containers becomes complex

- Need for automated deployment, scaling, and management
- Load balancing requirements

- Service networking

- Storage management

- Rolling updates & rollbacks

Intro to Kubernetes

- Container orchestration platform

- Automates deployment, scaling,
and management

- Originally developed by Google,
Now open source

- Abstracts away underlying
infrastructure

- Enables microservices architecture
at scale

- Industry standard for container
orchestration

kubernetes

Deploying to Kubernetes — The Helm Challenge

- Complex YAML configurations

- Difficult to manage application
versions

- No built-in templating

- No release management

kubernetes

Introduction to Helm

- Package manager for Kubernetes

- Simplifies application deployment
and management

- Provides templating for Kubernetes
manifests

- Manages releases and enables
rollbacks

- Industry standard for Kubernetes
deployments

v
HELM

~A

Putting it all together

Docker: Application packaging & containerization
- Solves environment consistency

Kubernetes: Container orchestration and management
- Solves container orchestration at scale

Helm: Kubernetes application deployment
- Simplifies kubernetes deployments

CI/CD: automate the whole workflow

Benefits

Consistency across environments
Infrastructure as code & config
Reproducible deployments
Scalability & resiliency

Agenda

- Demo 3

- March Sprint

- Deployment Technologies
- Example Industry Setup
- Upcoming Deadlines

- Deployment Tutorials

Agenda

- Demo 3

- March Sprint

- Deployment Technologies
- Example Industry Setup

- Upcoming Deadlines

- Deployment Tutorials

For Next Week

Weekly Focus

- Demo 3

- March Sprint Planning
Refine goals (update github readme)
Create sprint tickets

Mentor Meetings
- [Team]: Sprint planning + review sprint goals — work to pair down functionality if necessary

Deadlines

[Individual]: Teamwork survey (3/9)

Individual]: Peer PR review (3/30)

[Team]: End of March Sprint (3/30)

[Team]: Demo 4 (week of 3/31)

[Team]: R&D Showcase Application (4/4)

[Team]: R&D Showcase Poster Submission (4/18)

https://docs.google.com/forms/d/e/1FAIpQLSc5nxv95db3I2FJJ_aUTwppRjS1ydMlRxTcNSF7Vaa1_snxvA/viewform?usp=header
https://showcase.engineering.gwu.edu/participate
https://showcase.engineering.gwu.edu/participate

Example R&D Showcase Poster

BikeBuddy

Ethan Cohen | Claes Boillot | Matt Gouvin | Adham Popal
The George Washington University

Department of Computer Science

Despite having some of the best bicycle
infrastructure in North America, Washington still
sees cars hitting and killing cyclists at an
alarming rate. BikeBuddy aims to route cyclists
to their destination along safe, efficient, and
reliable routes.

The Application

Low Crime

\ left show the majority of data points collected.

"Our app pulls from OpenStreetMap as well as
Open Data DC, an API provided by city
government that contains data about cycling
infrastructure, road safety, and crime across the
District. The red dots in the map to the bottom

" We utilize the OSMnx in Python for graph
creation, specialized for maps. Construction of
graph data structures works by using our
ingested data to add specific bike nodes and
their attributes to the base graph for D.C. We
utilize a cKDTree (plot on the left) for efficient

onup of bike nodes that will be added.

Routing works by modifying the weights of

edges of our custom graphs. Thus, the shortest

path from the graph’s point of view will

generate based on the weight modifications we

have put in place. This can include user

preferences, user reports, and bike attributes
@)m our data ingest.

Department of Computer Science
School of Engineering & Applied Science

The Algorithm The Architecture

BikeBuddy fundamentally lives in an AWS

Lambda function that connects our front and
back ends. From the mobile app, users can
request routes as well as report unsafe
conditions they encounter. An AWS
EventBridge scheduler refreshes the data
every morning so the map is always up to
date. Our graphs and lookup structures are
stored in S3.

B — Do

=1
—N

GW | Engineering

Example R&D Showcase Poster

THE GEORGE
WASHINGTON

UNIVERSITY
WASHINGTON, DC

RTX CapsTONE COMPETITION

MAE: BrenoaN HumPHREY, IFTAKHAR ALam, NiTHA PauLus, RYAN RAFATI
CS (UAV): KarL SimoN, LEo PHAN, JusTiN PARK
CS (UGV): Manue ALamo, Dania AspALLa, KayLA BERNE

Abvisors: JARICK CAMMARATO, STEVEN SHOOTER, TimotHy Woop

The drone competition integrates advanced tech like
Al vision, autonomy, and 3D printing. This year's
"Water Blast!" mission pushes the boundaries of
unmanned vehicle technology

Real-World Applications: By solving the "Water
Blast!" challenge, teams contribute to the
development of drone tech for tasks like package
delivery and firefighting

The competition is a high-energy event where
‘months of hard work culminate in showcasing
creations and competing against other top teams.

Engage students in the RTX d
comprising seeker and evader challenges

Develop algorithms for UAV navigation and object
detection to meet competition requirements
Design, prototype, and optimize water deployment
and detection systems for UAVs and UGVs
Execute precise coordination and strategic
decision-making to overcome competition
challenges

n of Approach

Unmanned Aerial Vehicle (UAV)

UAV is a hexacopter (6 propellers)
Nvidia Jetson Orin Nano for image processing
and route planning
Flight controller equipped with three IMU
sensors and a barometer
14.8 V 4000 mAh battery to power all UAV
systems, capable of ~12 minutes flight time
Camera — Full HD, 60 fps, 128° FOV — for
ArUco marker detection

GPS receiver for navigation

Rangefinder for altitude measurement

RF receiver for remote control

‘Water Deployment System
Self-priming pump delivers a consistent flow
rate of 8mL/second at 12v, controlled by a
normally closed solenoid valve connected to the
onboard computer.

Adjustable nozzle optimizes spray pattern,
while quick-connect tubing allows for fast
assembly, disassembly, and future
‘modifications.

R
principles through hands-on application and
experiential learning

Overall Approach
—_——

Figure 1: UAV Circuit Architecture

Figure 2: UGV Circuit Architecture

d d 3D-printed structures (ABS
plastic) provide secure and reliable component
placement on the drone frame

Unmanned Ground Vehicle (UGV)
Basic frame with patterned holes for variable
mounting

2 motor drive with 0.69 Nm, 294 RPM motors
powered by a7.4 V 5200 mAh battery
Raspberry Pi 4 Model B powered by a separate
5V battery

ROS2 workspace with nodes and topics to
facilitate communication between all sensors
and the Pi

‘Water Detection System
Hydrophobic-coated ArUco marker placed on a
angled (3.5 degrees) funnel allows water to flow
seamlessly into the funnel while remaining
easily detectable by the sensor
‘The water detection chip, angled to prevent
water build-up, triggers a dual response upon
water contact. First, a signal alerts the team of
water detection, and second, LED lights and an
alarm on the UGV visually confirm the
detection

Jetson GPS Raceiver
Fight \ e

Controller

Motor &
Propeller

Water
Nozzle

ArUco Marker
(3.5° angle)

‘Water
Sensor

Figure 4: Photographs of current assembly

Algorithms and Testing

UAV

Figure 5; Camera footage from camera on UAV.

We tested our UAV at GW VSTC and UMD

campus, outside DC flight restricted zone

Users can view real-time camera footage

and sensor readings from the UAV

o The UAV can be controlled remotely via
remote controllers and computers

o The UAV flies autonomously 3 meters in

the air to scan for ArlUco Markers

Once detected a non-ally marker, the UAV

flies toward it and releases water

When all non-ally markers have been

targeted, the UAV flies back to its base

uGv

* We tested our UGV following each of the
challenges

© Motor controls UGV at 3 constant speeds

« When UGV has been hit, alerts with lights
and buzzer and logs the hit with time

o When hit UGV will immediately disable
the motors and the UGV will stop
traveling

* UGV uses on board IMU sensor to make
precise 90 degree turns and stay on a
straight linear path

Acknowledgments.

Special thanks to Jarick Cammarato,
Professor Steven Shooter, Professor
Timothy Wood, the GW 3D Printing Lab,
the GW Machine Shop, & the Drone Lab

Example R&D Showcase Poster

CHAT GPTRAVEL

SIDRA HUSSAIN, EVAN FRIES, COLIN RANCK, SARAH JAGERDEO

PROBLEM STATEMENT SYSTEM ARCHITECTURE

Our project aims to bridge Our application is hosted on an AWS EC2 server running an ubuntu operating system. Therefore, the architecture

CosT
OPTIMIZATION

fiters

design is all contained within AWS. The purpose of chatGPTravel is to take a desti user p andan
optimization metric from the user and return an itinerary for said destination using generative Al and the
corresponding optimization algorithm. First, the user must log in to the application sing the system UI. We
maintain and update a user database. A logged in user can view their saved itineraries and generate new itineraries
through the user interface.

the gap between knowing
where you want to visit and
having personal travel
preferences, but not
knowing what activities align
with those preferences or
how to optimize your
itinerary at your travel
destination.

The core of our application is the itinerary generation functionality. When the user enters a destination, dates,
preferences and optimization metric, we acquire activities in the specified destination city from the Yelp and
Foursquare APIs to yield activities with specific information, such as location, phone number, operational hours,
rating and cost. We next filter the activities from the APIs based on the user's specified preferences using the
openAl APl and a set of natural language queries designed to yield the most accurate results. Finally, the system
needs to decide which optimization algorithm to apply: fastest, cheapest, or best rated, which was provided during
the user input period. The appropriate algorithm is applied to the activities to generate an itinerary for the specified

number of days and then the itinerary is returned to the user.
Currently, many travel

services create itineraries for
users based on their
preferences. For example,
Wonderplan.ai creates

itineraries based on factors
such as budget, number of

travelers, and activities of
I

interest. However, these
Activity 1

products often do not
optimize their itineraries
with objective measures like
cost, ratings, or travel time.

4
o St
| ostimization metric | 1want to go to X. Yos | Activity 2

\will optimize by Z. Activity 3

Activity 4 9

<
o

Our project addresses this
gap by generating travel

—
Teansit Time

itineraries based on user

preferences, using activity — o s
suggestions from sources FOURSQUARE LE MAP!
like Yelp and Foursquare. We UL API CHERSLART API

then filter these suggestions
with ChatGPT to align them
with personal travel
preferences, while also
optimizing for objective
measures such as cost,
ratings, and travel time.

Calculates the
amount of time it
takes to travel
between

Filters the
restaurants and
activities based

on users food Sinn
activities,

and activity restaurants and
preferences hotels

Generates
restaurants
located near

the user’s hotel
address

Generates
activites near
the user's hotel
address

through a lst of activities and then
Sorts them from cheapest to most
expensive. The algorithm adopts 3

breakfast, lunch, dinner, and non-meal
category. The selection process
continues until the top five cheapest
activities are chosen for the day within

costs, based on the dollar (§) rating
system provided by Yelp and
Foursquare.

RATINGS
OPTIMIZATION

Initially, the ratings optimization
algorithm filters through a st of
activities and selects clusters of top-
rated restaurants with ratings above &
stars for breakfast, lunch, and dinner.
The algorithm adopts a greedy
strategy, iteratively choosing the
highest-rated restaurant within the
specified cluster for each meal:
breakfast, lunch, and dinner and non-
meal category. The selection process
continues until an itinerary is created

Foursquare AP| when the activity is
initially generated.

TRANSIT TIME
OPTIMIZATION

‘The transit time optimization
algorithm adopts a greedy
approach, it iteratively finds the
activity that is closest to the hotel,
then finds the activity that is
closest to the first activity, second
activity, and so on until the
itinerary is completed to create an
itinerary that is optimized based
on transit time for each day. The
transit time between two locations
s found by finding the directions.
between two locations using the
google maps api.

COSTS AND RISK

Our project has a few
costs associated with
it. Particularly, we pay
for an API key to use
chatGPT, Google Maps
directions API, AWS
database services and
AWS Web hosting
services. We also use
the free Yelp and
Foursquare APIs. Both
of these APIs have
usage limits, therefore
we have created
multiple free keys to
cycle through in
instances when the
usage limit is hit.

FUTURE WORK

In the future, we hope to
improve our project in a few
ways. First, we would like to
improve the runtime of our
application because it can
sometimes take 5+ minutes
to generate an itinerary.
Additionally, we would like to
add more features to
improve our users’
experience, such as the
ability to customize
generated itineraries by
adding and removing to it,
links to direct booking
services, and better filtering
of activities. Most
importantly, we would like to
improve our error handling
when the application crashes
or an API key limit is hit.

Agenda

- Demo 3

- March Sprint

- Deployment Technologies
- Example Industry Setup

- Upcoming Deadlines

- Deployment Tutorials

Deployment Tutorials

- EC2: Setup a VM in aws & run your code like you would on your computer
- Elastic Beanstalk: Provide source code, aws manages the platform and
deploys it

https://www.youtube.com/watch?v=FaKIKCicyKQ

- Amplify*: Provide source code/link with github, aws manages deployment.
Primarily focused towards frontend devs
- App Runner®*: Provide a docker image, deploys without kubernetes

*Cannot be completed in the aws academy learner lab

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html
https://www.youtube.com/watch?v=FaKlKCicyKQ
https://aws.amazon.com/getting-started/hands-on/build-web-app-s3-lambda-api-gateway-dynamodb/
https://docs.aws.amazon.com/apprunner/latest/dg/getting-started.html

