
Design Documents

Sarah Morin



 Agenda

Introduction

Motivation

Structure of Design Docs

Example: Chat Room

High Level Summary

Component Design

Development Plan

Conclusion

3

4

7

9

10

11

12

15



 

3

Motivation
Short-term – Your writing assignments!

Long-term – Good design docs are important

Cynical – Fewer annoying questions

MotivationDesign Documents



Why do we write design docs?
● Record of ideas (your future self will thank you)

● Identify problems early

● Team consensus

● External Collaboration - professors, mentors, managers, other teams etc.

4MotivationDesign Documents

Don’t be intimidated by the blank page!



Common Pitfalls

MotivationDesign Documents

The freeform word 
dump

Stream of 
Consciousness

Easy to write, 
impossible to read

Background, Design, API 
Spec, Test Plan, Task 

Breakdown, and Schedule, 
all in one!

The Everything 
Document

Hard to follow, harder 
to maintain

Dive into the details, 
give context later!

Depth-first 
Design

Easy for experts…but 
what about everyone 

else?



 

6Structure of Design DocsDesign Documents

Project

Development PlanHigh Level Design

Detailed Design 
Component A

Detailed Design 
Component B Testing Plan Task Breakdown

Anatomy of Good Design Docs



Why this structure?
● Context first, details later

○ Introduce readers to problem before diving into design
○ Readability without expertise

● One thing at a time
○ Separate background, design, testing, and task 

breakdowns
○ Everything in one monster doc = unreadable

● Ease of navigation
○ Common structure means everyone can find information 

they want quickly
○ Easy to refer to development info (e.g. test plan) without 

re-reading the entire design

7Design Documents Structure of Design Docs

Project

Dev PlanDesign

Comp A Comp B Test 
Plan Tasks



Design Docs by Example: 
Chat Room

8



Making a Better Chat Room

What we have:  A super basic chat room 

● A single, open room users can freely join and leave
● Message history only persists locally for each user from the time they join to when they leave

What we want: Private channels with persisted message history

● User’s can create channels and manage members
● Channels store a complete message history
● Distinguish between “becoming a member” ( joining) and “opening the channel” ( joining)

9ExampleDesign Documents



10Design Documents

Trade-offs, Performance, and 
Concerns05

● Trade-offs: “Membership database will be lock protected, we choose 
correctness and safety over performance for operation like adding a member.”

● Concerns: “We introduce a lot of coordination requirements between system 
components. Testing must be aggressive”

Diagrams and Workflows04 ● Updated system component diagram
● Channel creation workflow and components involved

Solution Summary03
● New Components: Persistent Message Store, Membership Database, Multiple 

Chat-Servers, Load Balancer, etc.
● New Algorithms: Loading channel history, Load balancing strategy to map 

clients to chat-servers based on desired channel

Requirements, Goals, Non-goals02
● Functional : “Users can create private channels”
● Performance:  “Load the most recent X messages when users connect to a channel”
● Non-goal: “Immediate garbage collection of deleted channels, this will be eventual”

Problem Summary and Background01 “The current chat room is rudimentary. We want to add two features: private 
channels and persistent message history…”

High Level Summary



11Design Documents

Performance Analysis and Future 
Improvements05 “In the future we will add different types of users to channels like owner, 

administrator, read-only, etc.”

API Specs04
create_user(username, display_name=None, photo=None) ->

○ Success
○ Error: username exists
○ Error: Membership DB Unreachable

Detailed Design03
● What type of storage do we use? Specific database type?
● Schema for users, channels, and membership records
● Sorting strategy for records and reasoning

Requirements02
● Basic Functionality: “Store User and Channel Information, Membership relationship…”
● Supported Requests: “create/delete users/channels, add/remove member, …”
● Performance Goals: “Store X channels and Y users without performance degradation”

Component Summary01
“The membership database stores information about users, channels, and 
the relationship between them. It is the source of truth when determining if a 
user can join a channel….”

Component Design | Membership Database



12Design Documents

Performance Tests03
Test/determine performance limits of the system
Create channel, add 1000 members, spawn 1000 client processes to connect to 
channel and send messages.

Integration Tests02
Test new workflows through multiple components
create_user, create_channel, connect to channel, send messages, disconnect, 
reconnect -> touches membership DB, chat servers, and persistent message store

Unit Tests01 Basic, per-component tests that are easy to run and verify quickly
create_user(sarah) -> Success, create_user(sarah) -> Error: username exists

Development | Test Plan

Do I actually need to write out every test case?



13Design Documents

Assign03 ● Make tickets, boards, etc. for tasks
● Assign tasks to engineers

Schedule02
● Estimate work hours for each task
● Divide project into sets of tasks based on # of engineers, work estimates, and 

dependencies
● Timeline = longest set of tasks + extra time for mistakes

Task Breakdown01
● Divide design into manageable chunks of work
● Identify dependencies - where can we develop concurrently?
● Do we need to reach out to other teams?

Development | Task Breakdown & Schedule



 

14

Useful Resources
How to Write an Effective Design Document | Rina Artstain

Design Docs at Google | cramforce

Writing Design Docs | Oppia

ResourcesDesign Documents

https://rinaarts.com/how-to-write-an-effective-design-document/
https://www.industrialempathy.com/posts/design-docs-at-google/
https://github.com/oppia/oppia/wiki/Writing-design-docs

